How Can You Get Involved?

Our Board of Commissioners usually meets on the second Monday of each month at 7:00 p.m. at the utility office, located at 1745 Cunningham Road. Customers are always welcome to attend these meetings. Remember that your drinking water comes from area water bodies and it is important to safeguard our water supply.

The Commissioners of Hallsdale-Powell Utility District serve four-year terms. The remaining Commissioners make recommendations to the County Mayor after receiving input from the public. The Mayor selects Commissioners from a list submitted by the Board.

Decisions by the Board on customer complaints brought before them under the District’s Customer Complaint Policy may be reviewed by the Utility Management Review Board of the Tennessee Department of Environment and Conservation, pursuant to Section 7-82-701(7) of the Tennessee Code Annotated.

Water & Public Health

In order to ensure that tap water is safe to drink, EPA and the Tennessee Department of Environment and Conservation prescribe regulations which limit the amount of certain contaminants in water provided by public water systems.

Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. We have consistently met all these requirements and continually strive to deliver a high quality product. Our water not only meets, but exceeds, all State and Federal Drinking Water Standards and is safe.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections.

How It’s Used

To protect our drinking water, we use various treatment processes and monitoring results to ensure that the water we deliver is safe for consumption. The processes we use for each contaminant are based on the current EPA requirements and guidance as well as the source water characteristics.

The processes used for each contaminant are determined based on the characteristics of the source water. Each process is designed to remove or reduce the concentration of a contaminant to a level that is safe for consumption. The processes used are selected based on the effectiveness of each process in removing or reducing the concentration of the contaminant, the cost of the process, and the availability of the process.

The effectiveness of each process in removing or reducing the concentration of a contaminant is determined by the results of water quality monitoring. The results of water quality monitoring are used to determine the effectiveness of each process in removing or reducing the concentration of the contaminant. The results of water quality monitoring are used to determine the effectiveness of each process in removing or reducing the concentration of the contaminant.

Contact Information

For more information about the data in this report, or to answer specific questions about the quality of your drinking water, please contact Nick Jackson, Plant Manager at (865) 925-3929.

It’s up to all of us to help protect our water. As a utility that provides water to this region, it is even a greater responsibility for HPPUD. We take this responsibility very seriously, as this report indicates.

We depend on clean water to drink and for many of us our lakes and rivers are an important part of our quality of life, whether it is fishing, boating, swimming or just having a picnic near the water.

We’re doing all we can to make sure that people can enjoy this same quality of life for generations to come.

About Your Water Source

The sources of drinking water, (both tap water and bottled water) include rivers, lakes, streams, ponds, springs, reservoirs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water are listed in the Table containing our Water Quality Data.

Currently, your public drinking water comes from two sources: The Melton Hill Water Treatment Plant is supplied by surface water taken from Melton Hill Lake in Anderson County. The Norris Water Treatment Plant is supplied by surface water taken from Norris Lake in Union County. The Tennessee Department of Environment and Conservation (TDEC) has prepared a Source Water Assessment Program (SWAP) Report for all untreated water sources serving our water system.

According to the report, surface water from Melton Hill Lake is determined to be moderately susceptible to potential contamination. The surface water from Norris Lake water supply is determined to be low to moderately susceptible to potential contamination.

An explanation of TDEC’s Source Water Assessment Program, susceptibility scorings and the overall report to the U.S. Environmental Protection Agency (EPA) may be viewed online at: https://www.tn.gov/environment/programs-areas/water-resources/water-quality/source-water-assessment.html

Terms and Definitions

HPID routinely tests for contaminants in your drinking water as required by Federal and State laws. Unless noted otherwise, the table shows the results of our monitoring for the period from January 1 – December 31, 2019. In this data, you may find terms and abbreviations you are not familiar with. To help you better understand these terms, we have provided the following definitions:

- Action Level (AL) is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

- Below Detection Level (BDL) indicates parameter was below detection limits for the recognized detection method.

- Contaminant is any physical, chemical, biological, or radiological substance or matter in water, which may or may not be harmful depending upon the concentration.

- Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology.

- Maximum Contaminant Level Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

- Maximum Residual Disinfectant Level (MRDL) is the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for the control of microbial contaminants.

- Maximum Residual Disinfectant Level Goal (MRDLG) is the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

- Nephelometric Turbidity Unit (NTU) is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

- Picocuries per Liter (pCi/L) is a measure of radioactivity in water.

- Secondary Standards are guidelines pertaining to certain contaminants that may cause cosmetic effects, such as skin or tooth discoloration, or taste, odor, or discoloration in drinking water.

- Treatment Technique (TT) is a required process intended to reduce the level of a contaminant in drinking water.

-Credits per Liter (μG/L) is a measure of radioactivity in water.

-Part per million (ppm) or milligrams per liter. One part per million is equivalent to one million in two years or a single penny in $10,000,000.

-Part per billion (ppb) or micrograms per liter. One part per billion corresponds to one million in 2,000 years or a single penny in $1,000,000.
<table>
<thead>
<tr>
<th>Violation</th>
<th>Range or Max Detected</th>
<th>AVG</th>
<th>Unit</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (Melton Hill)</td>
<td>0.80 - 1.00</td>
<td>1.56 ppm</td>
<td>4</td>
<td>ppm</td>
<td>4</td>
<td>Used to water treatment to control microbes</td>
</tr>
<tr>
<td>Chlorine (Norris)</td>
<td>0.70 - 1.44</td>
<td>1.36 ppm</td>
<td>4</td>
<td>ppm</td>
<td>4</td>
<td>Used to water treatment to control microbes</td>
</tr>
<tr>
<td>Chlorite (Water Plant)</td>
<td>0.01 - 0.0322</td>
<td>0.37 ppm</td>
<td>1</td>
<td>ppm</td>
<td>1</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorite (Distribution System)</td>
<td>0.01 - 0.0735</td>
<td>0.26 ppm</td>
<td>0.8</td>
<td>ppm</td>
<td>0.8</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>Melton Hill Lake</td>
<td>0 - 1.0 oocysts/L</td>
<td>0.33 Oocyst/L</td>
<td>N/A</td>
<td>N/A</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Cronobacter sakazakii</td>
<td>Cultured in 2020</td>
<td>N</td>
<td>0.018 - 0.733</td>
<td>0.42 ppm</td>
<td>1.34 ppm</td>
<td>1.34 ppm</td>
</tr>
</tbody>
</table>

Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits

Turbidity

- **Melton Hill**
 - Range or Max Detected: 0.10 - 5.12 ppm
 - AVG: 0.03 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

- **Norris**
 - Range or Max Detected: 0.00 - 0.11 ppm
 - AVG: 0.04 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

TSS

- **Melton Hill**
 - Range or Max Detected: 0.01 - 0.7 ppm
 - AVG: 0.02 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

- **Norris**
 - Range or Max Detected: 0.01 - 0.01 ppm
 - AVG: 0.00 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

ND

- **Melton Hill**
 - Range or Max Detected: 0 - 0.7 ppm
 - AVG: 0.01 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

- **Norris**
 - Range or Max Detected: 0 - 0.0 ppm
 - AVG: 0.00 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

Turbidity

- **Melton Hill**
 - Range or Max Detected: 0.01 - 0.12 ppm
 - AVG: 0.03 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

- **Norris**
 - Range or Max Detected: 0.00 - 0.01 ppm
 - AVG: 0.00 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

E. coli

- **Melton Hill**
 - Range or Max Detected: 0 - 0.011 ppm
 - AVG: 0.00 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

- **Norris**
 - Range or Max Detected: 0 - 0.00 ppm
 - AVG: 0.00 ppm
 - Unit: ppm
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Soil runoff

Nitrate

- **Melton Hill**
 - Range or Max Detected: 0.382 ppm
 - AVG: 0.01 ppm
 - Unit: ppm
 - MCLG: 10
 - MCL: 10
 - Likely Source of Contamination: Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits

- **Norris**
 - Range or Max Detected: 0.684 ppm
 - AVG: 0.10 ppm
 - Unit: ppm
 - MCLG: 10
 - MCL: 10
 - Likely Source of Contamination: Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits

Zinc

- **Melton Hill**
 - Range or Max Detected: 0.0056 - 0.0064 ppm
 - AVG: 0.006 ppm
 - Unit: ppm
 - MCLG: 5
 - MCL: 5
 - Likely Source of Contamination: Erosion from natural deposits

- **Norris**
 - Range or Max Detected: 0.0056 - 0.0064 ppm
 - AVG: 0.006 ppm
 - Unit: ppm
 - MCLG: 5
 - MCL: 5
 - Likely Source of Contamination: Erosion from natural deposits

Total Organic Carbon

- **Melton Hill**
 - Range or Max Detected: 2.8 - 99 ppm
 - AVG: 16.8 ppm
 - Unit: ppm
 - MCLG: 500
 - MCL: 500
 - Likely Source of Contamination: Runoff, leaching from natural deposits

- **Norris**
 - Range or Max Detected: 4.8 - 50 ppm
 - AVG: 32 ppm
 - Unit: ppm
 - MCLG: 60
 - MCL: 60
 - Likely Source of Contamination: Runoff, leaching from natural deposits

Pesticides

- **Melton Hill**
 - Range or Max Detected: 0.018 - 0.71 ppm
 - AVG: 0.42 ppm
 - Unit: ppm
 - MCLG: 15
 - MCL: 15
 - Likely Source of Contamination: Corrosion of household plumbing systems

- **Norris**
 - Range or Max Detected: 0.018 - 0.71 ppm
 - AVG: 0.42 ppm
 - Unit: ppm
 - MCLG: 15
 - MCL: 15
 - Likely Source of Contamination: Corrosion of household plumbing systems

Cryptosporidium

- **Melton Hill**
 - Range or Max Detected: 0 - 1.0 oocysts/L
 - AVG: 0.33 Oocysts/L
 - Unit: Oocysts/L
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Naturally present in the environment

- **Norris**
 - Range or Max Detected: None Detected
 - AVG: N/A
 - Unit: Oocysts/L
 - MCLG: N/A
 - MCL: N/A
 - Likely Source of Contamination: Naturally present in the environment

Lead

- **Melton Hill**
 - Range or Max Detected: 0.5 - 7.90 ppb
 - AVG: 2 ppb
 - Unit: ppb
 - MCLG: 15
 - MCL: 15
 - Likely Source of Contamination: Corrosion of household plumbing systems

- **Norris**
 - Range or Max Detected: 0.5 - 7.90 ppb
 - AVG: 2 ppb
 - Unit: ppb
 - MCLG: 15
 - MCL: 15
 - Likely Source of Contamination: Corrosion of household plumbing systems